Рентгеновский лазер помог физикам взглянуть на электроны внутри алмаза

Физики использовали сверхмощный рентгеновский лазер LCLS для получения первых фотоснимков отдельных электронов, обращающихся вокруг атомов углерода в кристалле алмаза, и опубликовали результаты своей работы в статье в журнале Nature. Излучатель LCLS в американской Национальной ускорительной лаборатории SLAC в Калифорнии является самым мощным на сегодня рентгеновским лазером на свободных электронах. Это устройство используется для самых разнообразных экспериментов в области физики элементарных частиц и в других разделах этой науки.

Физики использовали сверхмощный рентгеновский лазер LCLS для получения первых фотоснимков отдельных электронов, обращающихся вокруг атомов углерода в кристалле алмаза, и опубликовали результаты своей работы в статье в журнале Nature.

Излучатель LCLS в американской Национальной ускорительной лаборатории SLAC в Калифорнии является самым мощным на сегодня рентгеновским лазером на свободных электронах. Это устройство используется для самых разнообразных экспериментов в области физики элементарных частиц и в других разделах этой науки. Так, в феврале 2012 года ученым впервые удалось получить изображения вирусной частицы в высоком разрешении, а в мае этого же года — рассмотреть отдельные атомы в молекуле белка.

Группа физиков под руководством Тортона Гловера (Thorton Glover) из Национальной лаборатории имени Лоуренса в Беркли (США) приспособила LCLS для наблюдения за взаимодействием света и электронов и фотографирования этого процесса.
«Электроны в атомах внутри молекул делятся на две группы — »активные" частицы и «зрители». Первые относятся к категории валентных электронов, участвующих в химических реакциях, а наблюдатели состоят из частиц из внутренних, заполненных электронных оболочек. Рентгеновские лучи позволяют «увидеть» атом, однако они не способны показать, как распределены валентные электроны", — пояснил Гловер.

Авторы статьи решили эту проблему следующим образом. Они подключили к компьютеру, управляющему LCLS, дополнительный лазер, излучающий в видимом диапазоне электромагнитных волн. При фотографировании сначала включается оптический лазер, и лишь через несколько мгновений — рентгеновский излучатель.
Фотоны видимого света взаимодействуют с валентными электронами в атомах, «поднимая» их на более высокий энергетический уровень. Через некоторое время с ними сталкиваются лучи рентгена, в результате чего электроны теряют дополнительную энергию, опускаясь на прежний уровень. В ходе этого процесса фотоны рентгена и видимого излучения «складываются» и из образца выходит поток рентгена с новой частотой.

Данный прием позволяет отделить данные о положении атома от информации о пространственном распределении валентных электронов, вращающихся вокруг атомного ядра. Ученые успешно проверили его в действии, сфотографировав валентные электроны в алмазной пластинке.

Сама по себе эта информация не несет научной ценности, однако эта же методика может быть применена для изучения белковых кристаллов и других сложных молекул. Гловер и его коллеги полагают, что их работа поможет другим физикам «взглянуть» на то, как происходят многие сложные химические реакции, в том числе фотосинтез.

Источник: www.rian.ru

Лазер помог физикам увидеть сверхбыстрые изменения в молекулах
Российские ученые и их коллеги из Японии и Китая с помощью облучения быстрыми лазерными импульсами увидели изменения структуры молекулы, которые происходят за миллиардные доли миллиардной доли секунды, сообщили в понедельник…

Физики проконтролировали движение электронов с точностью до трех аттосекунд
Группа исследователей при участии российских физиков сумела провести эксперимент, в котором им впервые в мире удалось контролировать сверхбыстрые движения электронов с точностью до трех аттосекунд.

Физики предложили схему компактного рентгеновского лазера
Американские физики предложили схему компактного источника так называемого мягкого рентгеновского излучения. Статья ученых появилась в журнале Science, а ее краткое изложение приводят Nature News. В основе работы источника так называемый эффект генерации гармоник высокого порядка. Суть его заключается в следующем: материал облучается когерентным пучком электромагнитного излучения (лазерным импульсом). Пучок поглощается, после чего материал испускает когерентное излучение с более короткой длиной волны. Этот эффект был известен достаточно давно.

БАК помог физикам уточнить вероятность редчайшего распада кварков
МОСКВА, 27 июл — РИА Новости. Большой адронный коллайдер помог физикам впервые оценить то, с какой вероятностью происходит редчайший тип превращения одного вида кварка в другой «кирпичик материи» внутри тяжелого…


  • Электрв,
  • Лазер,
  • Частица,
  • Лаборатория,
  • Нацильна
Комментировать публикацию через Постсовет:
Комментарии (0) RSS свернуть / развернуть

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.


Комментировать публикацию через Вконтакте: