Математик приблизился к решению проблемы Гольдбаха Математик Теренс Тао (Terence Tao) из Калифорнийского университета продвинулся в доказательстве малой (тернарной) проблемы Гольдабаха. Об этом сообщает Nature News. Препринт статьи доступен на сайте arXiv.org. Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Слабая или тернарная проблема звучит следующим образом: доказать, что всякое нечетное число больше пяти представимо в виде суммы трех простых. Из справедливости бинарной проблемы следует справедливость тернарной (в качестве одного из простых в разложении достаточно взять тройку). Наибольшие продвижения в решении сделаны в направлении тернарной задачи. Так, в 1937 году математик Иван Виноградов доказал, что все достаточно большие (то есть большие некоторого фиксированного N) нечетные числа можно представить в виде суммы трех простых. Его учеником Константином Бороздиным было показано, что граница N в работе Виноградова составляет число порядка 106 846 168. Позже она неоднократно уменьшалась и в настоящее время лучший порядок оценки — 1043 000,5. Полученные результаты все еще не позволяют проверить исключительные случаи теоремы Виноградова на компьютере, поэтому работа в этом направлении ведется достаточно активно. Теренсу Тао удалось доказать, что всякое нечетное число представимо как сумма не более чем пяти простых чисел. Фактически это ближайший к тернарной проблеме Гольдбаха результат из всех возможных — простые числа больше двойки нечетны, поэтому нечетное число не может быть представлено в виде суммы четырех таких чисел (сумма будет четной). Следующее улучшение результата — сумма трех простых чисел, то есть малая проблема Гольдбаха. Что касается бинарной проблемы Гольдбаха, то про нее известно много меньше. В настоящий момент есть теорема Ромаре 1995 года, которая утверждает, что любое четное число представимо в виде суммы не более чем шести простых чисел. Из этого результата легко получается, что, в предположении истинности тернарной проблемы Гольдбаха, всякое четное число представимо в виде суммы не более чем четырех простых чисел. Источник: lenta.ru Фото с сайта lenta.ru Число, ВИД, Сумма, Проблема, Гольдбах

Математик приблизился к решению проблемы Гольдбаха

Математик приблизился к решению проблемы ГольдбахаМатематик Теренс Тао (Terence Tao) из Калифорнийского университета продвинулся в доказательстве малой (тернарной) проблемы Гольдабаха. Об этом сообщает Nature News. Препринт статьи доступен на сайте arXiv.org. Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта.

Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Слабая или тернарная проблема звучит следующим образом: доказать, что всякое нечетное число больше пяти представимо в виде суммы трех простых. Из справедливости бинарной проблемы следует справедливость тернарной (в качестве одного из простых в разложении достаточно взять тройку).

Наибольшие продвижения в решении сделаны в направлении тернарной задачи. Так, в 1937 году математик Иван Виноградов доказал, что все достаточно большие (то есть большие некоторого фиксированного N) нечетные числа можно представить в виде суммы трех простых. Его учеником Константином Бороздиным было показано, что граница N в работе Виноградова составляет число порядка 106 846 168. Позже она неоднократно уменьшалась и в настоящее время лучший порядок оценки — 1043 000,5.

Полученные результаты все еще не позволяют проверить исключительные случаи теоремы Виноградова на компьютере, поэтому работа в этом направлении ведется достаточно активно. Теренсу Тао удалось доказать, что всякое нечетное число представимо как сумма не более чем пяти простых чисел. Фактически это ближайший к тернарной проблеме Гольдбаха результат из всех возможных — простые числа больше двойки нечетны, поэтому нечетное число не может быть представлено в виде суммы четырех таких чисел (сумма будет четной). Следующее улучшение результата — сумма трех простых чисел, то есть малая проблема Гольдбаха.

Что касается бинарной проблемы Гольдбаха, то про нее известно много меньше. В настоящий момент есть теорема Ромаре 1995 года, которая утверждает, что любое четное число представимо в виде суммы не более чем шести простых чисел. Из этого результата легко получается, что, в предположении истинности тернарной проблемы Гольдбаха, всякое четное число представимо в виде суммы не более чем четырех простых чисел.

Источник: lenta.ru


Фото с сайта lenta.ru

Абэ предложил новый подход к решению проблемы Курильских островов
Премьер-министр Японии Синдзо Абэ в ходе переговоров с президентом России Владимиром Путиным, которые в пятницу вечером завершились в Сочи, предложил новый подход к решению проблемы Курильских островов.


  • Число,
  • ВИД,
  • Сумма,
  • Проблема,
  • Гольдбах
Комментировать публикацию через Постсовет:
Комментарии (0) RSS свернуть / развернуть

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.